Über den Autor

Dr. Frederic M. C. Kauffmann

Zahnklinik Würzburg
Pleicherwall 2
97070 Würzburg
Germany
0931 - 201- 72570
kauffmann_f@ukw.de
http://www.parodontologie.ukw.de/mitarbeiter/za-frederic-kauffmann.html

Vita

geboren am 23.05.1982 in Wiesbaden, Deutschland

Studium:

  • 2004–2010: Studium der Zahnmedizin an der Julius-Maximilians-Universität Würzburg
  • 2010: Approbation
  • 2017: Promotion

Tätigkeit:

  • 2011–2013: Assistenzarzt in der Praxis Curvadent – Dr. Otto und Kollegen in Hafenlohr
  • 2013–heute: Wissenschaftlicher Mitarbeiter an der Klinik und den Polikliniken für Zahn-, Mund- und Kiefergesundheit der Universität Würzburg in der Poliklinik für Zahnerhaltung und Parodontologie Abteilung für Parodontologie (Leiter: Prof. Dr. U. Schlagenhauf)

Auslandsaufenthalte:

  • 08/2009–03/2010: Erasmussemester an der Umeå Universitet in Schweden
  • 03/2015: Prince Philip Dental Hospital; Abteilung für Parodontologie, Prof. Dr. Corbet, Hong Kong, China

Co-Autoren

Fickl S, Stappert, Schulze-Riewald, Schlagenhauf

Scar tissue formation following ridge preservation techniques – a retrospective controlled clinical study

Thema

Abstract

The aim of this retrospective controlled clinical study was to compare a porcine collagen matrix (Geistlich Mucograft® Seal, Geistlich Pharma AG, Wolhusen, Switzerland) with a free gingival punch-graft harvested from the palate for ridge preservation with respect to size, invagination and colour of resulting soft-tissue scar formation.

Background and aim

Ridge preservation has been shown to reduce tissue atrophy following tooth extraction1,2. Among various techniques for ridge preservation the combination of a deproteinized bovine bone mineral with an autologous punch graft has demonstrated to be an effective technique to reduce postoperative ridge reduction3,4. Recently a porcine collagen matrix has been introduced as an alternative for autologous punch grafting5,6. Clinically soft-tissue grafting seems to be associated with scaring of the adjacent soft-tissue complex.

Methods and materials

In total 22 patients were included in this study. Group A consisted of 12 and group B of 10 patients. In group A the extraction socket was filled with a deproteinized bovine bone mineral (Geistlich Bio-Oss®, Geistlich Pharma AG, Wolhusen, Switzerland) and covered with a free gingival punch graft harvested from the palate. In group B the extraction socket was filled with a deproteinized bovine bone mineral (Geistlich Bio-Oss®) and covered with a porcine collagen matrix (Geistlich Mucograft® Seal). All patients were in need of single tooth extraction and treated between March 2012 and July 2015 by the same surgeon. After final prosthetic reconstruction two independent examiners evaluated size, invagination and colour of the resulting soft-tissue scar using a modified scar-evaluation-scale7. Patient satisfaction was evaluated by a questionnaire. Additionally, patient records were screened for frequency and costs of scar removal treatment. Treatment groups were compared using non-parametric statistics.

Results

The average scar score of group A and group B was 1.33 and 4.3, respectively revealing significantly less scaring in group B (p=0.000295). Patient satisfaction was not statistically significant different between the treatment groups (p=0.711, p=0.809). Frequency and costs of scar removal treatment were statistically significant higher in group A (p=0.000234).

 

Bildergalerie (5)

Literatur:

  1. Fickl S, Zuhr O, Wachtel H, Bolz W & Huerzeler MB (2008). Hard tissue alterations after socket preservation: an experimental study in the beagle dog. Clin Oral Implants Res 19, 1111–1118. doi:10.1111/j.1600-0501.2008.01575.x.
  2. Vignoletti F, Matesanz P, Rodrigo D, Figuero E, Martin C & Sanz M (2012). Surgical protocols for ridge preservation after tooth extraction. A systematic review. Clin Oral Implants Res 23 Suppl 5, 22–38. doi:10.1111/j.1600-0501.2011.02331.x.
  3. Thalmair T, Fickl S, Schneider D, Hinze M & Wachtel H (2013). Dimensional alterations of extraction sites after different alveolar ridge preservation techniques – a volumetric study. J Clin Periodontol 40, 721–727. doi:10.1111/jcpe.12111.
  4. Barone A, Todisco M, Ludovichetti M, Gualini F, Aggstaller H, Torres-Lagares D, Rohrer MD, Prasad HS & Kenealy JN (2013). A prospective, randomized, controlled, multicenter evaluation of extraction socket preservation comparing two bovine xenografts: clinical and histologic outcomes. Int J Periodontics Restorative Dent 33, 795–802. doi:10.11607/prd.1690.
  5. Rocchietta I, Schupbach P, Ghezzi C, Maschera E & Simion M (2012). Soft tissue integration of a porcine collagen membrane: an experimental study in pigs. Int J Periodontics Restorative Dent 32, 34–40.
  6. Sanz M, Lorenzo R, Aranda JJ, Martin C & Orsini M (2009). Clinical evaluation of a new collagen matrix (Mucograft prototype) to enhance the width of keratinized tissue in patients with fixed prosthetic restorations: a randomized prospective clinical trial. J Clin Periodontol 36, 868–876. doi:10.1111/j.1600-051X.2009.01460.x.
  7. Singer AJ, Arora B, Dagum A, Valentine S & Hollander JE (2007). Development and validation of a novel scar evaluation scale. Plast Reconstr Surg 120, 1892–1897. doi:10.1097/01.prs.0000287275.15511.10.

Zusammenfassung:

The results suggest that ridge preservation using a deproteinized bovine bone mineral and a porcine collagen matrix leads to less scar tissue formation when compared to deproteinized bovine bone mineral and free gingival punch grafts from the palate.